



# 2024 Antimicrobial Stewardship

# Antimicrobial Stewardship 2024

# **Objectives**

## **Upon Completion of this Module, the participant will be able to:**

- Define antibiotic stewardship and goals of an antimicrobial stewardship program
- Detail adverse effects of antimicrobial use
- Review the principles of optimal antimicrobial use in the inpatient setting
- Review the principles of optimal antimicrobial use in the ambulatory setting
- Outline Baptist Health Care Antimicrobial Stewardship program leaderships, interventions, and outcomes
- Successfully answer the Antimicrobial Stewardship Competency Questions



# 2024 Antimicrobial Stewardship

#### **Definition**

- Antimicrobial stewardship consists of systematic measurement and coordinated interventions
  designed to promote the optimal use of antimicrobial agents, including their choice, dosing, route,
  and duration of administration
- Applies not only to antibacterial agents, but antifungals, antivirals, and antiretroviral
- Antimicrobial Stewardship Programs work in conjunction with infection prevention and control to:
  - Improve patient outcomes
  - Prevent the development of antimicrobial-resistant pathogens
  - Reduce the spread of infections caused by antimicrobial-resistant pathogens
  - Prevents avoidable adverse effects from antibiotic use necessary.

## **Adverse Effects of Antimicrobial Use**

- Selection of pathogenic organisms such as Clostridioides difficile through changes in microbial flora
- Drug toxicity
  - Direct effects
    - Examples: QT prolongation, nephrotoxicity, electrolyte abnormalities
  - Hypersensitivity
  - Drug interactions

#### The emergence of antimicrobial resistance

- Administration of an antimicrobial course to a patient exposes the approximately 1012 bacteria in that patient to selective pressure, which may alter the intestinal microbiota for as long as a year
- The United States Centers for Disease Control and Prevention estimates that more than 2.8 million infections caused by antimicrobial-resistant pathogens occur in the United States, resulting in more than 35,000 deaths

## <u>Principles of Optimal Antimicrobial Use In the Inpatient Setting</u>

- Antimicrobial allergy assessment
  - Patients with suspected antimicrobial allergies:
    - May receive suboptimal therapy and/or broader-spectrum antimicrobial therapy than necessary.
    - Have been observed to have a longer hospital stay, increased risk for surgical site infection, greater likelihood of intensive care unit admissions, and higher rates of death than those without a reported antimicrobial allergy
  - Correcting an inaccurate antimicrobial allergy history in the medical record is very useful for guiding subsequent decisions regarding a patient's antimicrobial therapy
- Initiation of empiric antibacterial therapy consists of the following:
  - Choosing the optimal antimicrobial regimen (after obtaining culture[s] from relevant sites),
     taking into consideration:
  - The severity and trajectory of illness
  - The likely pathogens and their anatomic source
  - The likelihood of drug resistance
  - Host factors, including those that may preclude the use of a particular antimicrobial class, increase the risk of toxicity or influence the spectrum of coverage
- Determining the appropriate dosing and route of administration
- Initiating antimicrobial therapy as promptly as possible.



# 2024 Antimicrobial Stewardship

### **Principles of Optimal Antimicrobial Use In The Inpatient Setting**

- Antimicrobial allergy assessment
  - Patients with suspected antimicrobial allergies:
  - May receive suboptimal therapy and/or broader-spectrum antimicrobial therapy than necessary.
  - Have been observed to have a longer hospital stay, increased risk for surgical site infection, greater likelihood of intensive care unit admissions, and higher rates of death than those without a reported antimicrobial allergy
  - Correcting an inaccurate antimicrobial allergy history in the medical record is very useful for guiding subsequent decisions regarding a patient's antimicrobial therapy
- Initiation of empiric antibacterial therapy consists of the following:
  - Choosing the optimal antimicrobial regimen (after obtaining culture[s] from relevant sites), taking into consideration:
  - The severity and trajectory of illness
  - The likely pathogens and their anatomic source
  - The likelihood of drug resistance
  - Host factors, including those that may preclude the use of a particular antimicrobial class, increase the risk of toxicity or influence the spectrum of coverage
- Determining the appropriate dosing and route of administration
- Initiating antimicrobial therapy as promptly as possible
- Antimicrobial allergy assessment
  - Patients with suspected antimicrobial allergies:
    - May receive suboptimal therapy and/or broader-spectrum antimicrobial therapy than necessary.
  - Correcting an inaccurate antimicrobial allergy history in the medical record is very useful for guiding subsequent decisions regarding a patient's antimicrobial therapy
- Prescriber familiarity with local antibiograms for empiric therapies
- Identifying conditions for which antimicrobials are not indicated
  - Examples include acute bronchitis, the common cold, other nonspecific upper respiratory infection or viral pharyngitis, and asymptomatic urinary tract infection
- Identifying conditions for which watchful waiting or delayed prescribing is appropriate but underused
  - Examples include acute otitis media and acute uncomplicated sinusitis
- Using the shortest effective duration of therapy
- Antimicrobial allergy assessment
  - Patients with suspected antimicrobial allergies:
  - May receive suboptimal therapy and/or broader-spectrum antimicrobial therapy than necessary.
  - Correcting an inaccurate antimicrobial allergy history in the medical record is very useful for guiding subsequent decisions regarding a patient's antimicrobial therapy
- Prescriber familiarity with local antibiograms for empiric therapies
- Identifying conditions for which antimicrobials are not indicated
  - Examples include acute bronchitis, the common cold, other nonspecific upper respiratory infection or viral pharyngitis, and asymptomatic urinary tract infection
- Identifying conditions for which watchful waiting or delayed prescribing is appropriate but underused
  - Examples include acute otitis media and acute uncomplicated sinusitis
- Using the shortest effective duration of therapy



# 2024 Antimicrobial Stewardship

## **Baptist Health Care Antimicrobial Stewardship Program**

- Established December 2008 at Baptist Health Care
  - Founded by Sid Clements MD FACP and Rudy Seelmann PharmD BCPS
- Current Antimicrobial Stewardship leadership:
  - Physician: David Daley MD
  - Pharmacist: Shelby Gaudet PharmD BCPS, BCIDP, BCCCP
  - Microbiology Manager: Grace Agatep MLS, ASCP
  - Infection Preventionist: Michael Munson
- Antimicrobial Stewardship Committee
  - Bimonthly multi-disciplinary committee
  - Responsible for outcomes of the program

### **Baptist Health Care Antimicrobial Stewardship Program Interventions**

- Antimicrobial utilization oversight:
  - Prospective audit and feedback model:
    - Trained pharmacy staff review antimicrobial orders and provide verbal or written recommendations to prescribers regarding optimization of antimicrobial use
    - The intervention does not delay the first dose of antimicrobial therapy, and acceptance of recommendations is voluntary
  - Select broad spectrum antimicrobials require a consult with an Infectious Disease specialists for continued therapy
  - The intervention does not delay the first dose of antimicrobial therapy
- Pharmacokinetic Monitoring:
  - Pharmacy automatic dosing of all pharmacokinetically adjusted antimicrobials
  - Pharmacy automatic dosing of renally adjusted antimicrobials not managed by an Infectious Disease Specialists
- Facility-specific clinical protocols:
  - Develop and maintain facility-specific clinical practice guidelines and pathways for common infections based on local epidemiology, susceptibility patterns, and drug availability or preference:
  - Examples include:
    - Antimicrobial Module
    - Sepsis Ordersets
    - Pneumonia Ordersets
    - ICU Ordersets
- Electronic decision support:
  - Information available at point of microbiology result review or orderset review to provide information that can assist with optimal antimicrobial use
  - Bi-annual Antibiogram available on Baptist Health Care Pharmacy's Connect Page:
    - Facility:
      - Baptist Health Care Antibiogram
      - Baptist Hospital Antibiogram
      - Gulf Breeze Hospital Antibiogram
    - Source:
      - Blood
      - Urine
      - Systemic



# 2024 Antimicrobial Stewardship

### **Baptist Health Care Antimicrobial Stewardship Program Interventions**

- Diagnostic Tools Available:
  - Viral and bacterial PCR Panels for suspected respiratory infections
  - Procalcitonin lab
    - Pro-hormone that is highly sensitive and specific for bacterial infection
    - Is used in conjunction with clinical signs and symptoms to determine if a bacterial infection is likely or not
    - Can assist clinicians on decision to initiate/continue antibiotics
- Education on antimicrobial stewardship provided:
  - New hire orientation
  - Annual competencies
  - Service line meetings
  - Pharmacy Newsletter sent out by Medical Affairs

## **Baptist Health Care Antimicrobial Stewardship Program Outcomes**

- Antimicrobial Stewardship Committee is responsible for the outcomes of the Antimicrobial Stewardship Program at BHC:
  - Measuring antimicrobial use and cost savings:
    - Defined daily dose for antimicrobials reviewed across the facilities and practitioner specialties
    - Cost per patient day
  - Process Measures:
    - Types and acceptance of prospective audit and feedback recommendations
    - Utilization of restricted antibiotics
    - Clostridioides difficile infection rates
    - Multi-drug resistant organism (MDRO) infection rates
    - Emergence of antimicrobial resistance over time
      - Antibiogram Trending Data
    - Ambulatory utilization of antimicrobials for viral infections
    - Ambulatory utilization of appropriate empiric antimicrobials for urinary tract infections



# 2024 Antimicrobial Stewardship

## <u>References</u>

- 1. Centers for Disease Control and Prevention. The Core Elements of Hospital Antibiotic Stewardship Programs: Checklist. http://www.cdc.gov/antibiotic-se/healthcare/pdfs/checklist.pdf
- 2. Centers for Disease Control and Prevention. Antibiotic Prescribing and Use. http://www.cdc.gov/antibiotic-use/
- 3. Barlam TF, Cosgrove SE, Abbo LM, et al. Implementing an Antibiotic Stewardship Program: Guidelines by the Infectious Diseases Society of America and the Society for Healthcare Epidemiology of America. Clin Infect Dis 2016; 62:e51.
- 4. Sanchez GV, Fleming-Dutra KE, Roberts RM, Hicks LA. Core Elements of Outpatient Antibiotic Stewardship. MMWR Recomm Rep 2016; 65:1.
- 5. Tamma PD, Avdic E, Li DX, et al. Association of Adverse Events With Antibiotic Use in Hospitalized Patients. JAMA Intern Med 2017; 177:1308.
- 6. Meek RW, Vyas H, Piddock LJ. Nonmedical Uses of Antibiotics: Time to Restrict Their Use? PLoS Biol 2015; 13:e1002266.
- 7. Rashid MU, Zaura E, Buijs MJ, et al. Determining the Long-term Effect of Antibiotic Administration on the Human Normal Intestinal Microbiota Using Culture and Pyrosequencing Methods. Clin Infect Dis 2015; 60 Suppl 2:S77.
- 8. Modi SR, Collins JJ, Relman DA. Antibiotics and the gut microbiota. J Clin Invest 2014; 124:4212.
- 9. Antibiotic Resistance Threats in the United States, 2019. Centers for Disease Control and Prevention. Available at: https://stacks.cdc.gov/view/cdc/82532.
- 10. Deresinski S. Principles of antibiotic therapy in severe infections: optimizing the therapeutic approach by use of laboratory and clinical data. Clin Infect Dis 2007; 45 Suppl 3:S177.
- 11. Tamma PD, Miller MA, Cosgrove SE. Rethinking How Antibiotics Are Prescribed: Incorporating the 4 Moments of Antibiotic Decision Making Into Clinical Practice. JAMA 2019; 321:139.
- 12. MacFadden DR, LaDelfa A, Leen J, et al. Impact of Reported Beta-Lactam Allergy on Inpatient Outcomes: A Multicenter Prospective Cohort Study. Clin Infect Dis 2016; 63:904.
- 13. Sakoulas G, Geriak M, Nizet V. Is a Reported Penicillin Allergy Sufficient Grounds to Forgo the Multidimensional Antimicrobial Benefits of β-Lactam Antibiotics? Clin Infect Dis 2019; 68:157.